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Abstract

The supposition of even temperature distribution in the sample mass (‘ingradient’ ap-
proach) led to mathematical expressions describing the basic quantitative elements of thermal
curves: the transformation duration, the peak height, the initial and final section peak areas and
the total area. The simplest expression is that for the total peak area: S=(R*Hd/2k1)InR\/R.
where R, H, d, k1 and R; are the radius, the specific thermal effect of sample transformation,
the gravimetric density and the outer layer encircling the sample, respectively. For the other
quantitative elements, the dependences are far more complicated, depending on the duration
and variants of the transformation process.
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Introduction

In previous articles, we presented an attempt to give the simplest mathemati-
cal description of the basic elements of the differential curve in the context of the
‘gradient” theory of thermal analysis, supposing that transformation in a sample
does not occur simultaneously in the whole volume, but spreads frontally from
the periphery to the centre.

It is interesting to examine another possible approach to the solution of the
problem of the mathematical description of DTA curve elements, which assumes
that, during the process of transformation, the sample under investigation has the
same temperature at all points, and transformation occurs simultaneously in the
whole volume: the ‘ingradient’ approach.

Discussions

Let us imagine a sample with one of the simplest forms for dcscription: an
endless cylinder with radius R and thermal parameters d, ¢ and . This sample is
encircled by a heat-insulating layer of material with thermal parameters d,, ¢,
and £, (respectively: density, specific heat and coefficient of thermal conductiv-
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ity). The outer surface of the cylinder with radius R is heated strictly according
to the linear law. The sample and heat-insulating layer are in ideal heat contact.

In contrast with the gradient theory, the ingradient thecry assumes (as a nec-
essary condition of its existence) the availability of a heat-insulating layer be-
tween the sample and the surface heated according to the given law. The ingradi-
ent theory will then have a more physical justification, the better the heat-insu-
lating properties of this layer. This can be put in terms of mathematics as

R Ri—-R
Tk

ndcR* < ndyey(RT - RY)

The assumptions include neglect the influence of some thermal parameters,
and in particular the heat conduction, on the form of the thermal curves.

After some time from the beginning of a linear temperature rise in the outer
surface of the heat-insulating layer, a quasi-stationary regime is established in
the system. If, at some moment of time, a transformation at constant temperature
T, begins in the sample, then during the whole process the temperature at any
point of the sample and on the inner surface of the heat-insulating layer is stable
and equal to the temperature of the phase transformation.

After the transformation is over, the stage of levelling begins, during which a
quasi-stationary regime is established in the system again. Taking into account
the assumptions made, the thermal problem for the transformation stage can be
written as follows:

oT, *T, AT
CLENRPR A B (1)
dty Jr ror
Tily=0 = To(r)
Til=k =T,
Tl—r, = Bt

where To(r) = T+B(r*~R*)/4a:—BR*/2a\Inr/R, i.c. there is a quasi-stationary tem-
perature distribution in the heat-insulating layer at the moment of transformation.

The substitutions 7=7,-B¢-T; and r=¢, ¢, convert problem 1 to the problem
with zero-order initial condition and canonical boundary conditions:

oT *T AT
- _ R 2
ot al(apz " rar] @)
TI(:O = O
Tlh—r = —Br
Teer =0
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We note that the magnitude 71;-x (as far as sense is concerned) corresponds to
the temperature difference of the sample under investigation and the temperature
the sample could have under a quasi-stationary regime of heating.

To get an approximate solution of problem 2 which could satisfactorily work
for any time of phase transformation, we put the problem in Laplace transforms
with a variable #:

_ 52 h
FT—al(ﬂJrg':o (3)
karz r8rJ
B
Tl=p = — )
N, =0

With large F values (small time 7) Eq. (3) allows asymptotic decomposition,
the first member of which is as follows:

To=_ _f_;’z« /B.e*V'F/—“T<" Ry, @e—\@;(nrm (4)
F2oor

With small F values, which correspond to a large time 7 (large thermal (rans-
formation effect, low heat speed, etc.), Eq. (3) again allows asymptotic decom-
position, the first member of which is a quasi-stationary solution of the problem:

} __ Blan/)"
FInR/r

+OF ™Y (5)

We now construct a function

- AR T InRy/r 4/ -y ‘
fz_ﬁ{ ?e VFla, (r R)+[_“_L_ E]e vFia; (R, R):I (6)

InR/r I3

Asymptotic decomposition (6) with degree #'is equal to Eq. (5). Hence, with
a small F the function (Eq. (6)) coincides with the solution of Eq. (2) with accu-
racy up to @(exp[—\/—S_(R]—R)al)] close to Fq. (4). Function (6) therefore affords a
close solution of Eq. (3) for large and small F values. Taking Eq. (6) as an ap-
proximate solution of Eq. (3) and taking the reverse Laplace transform, we ob-
tain an approximate solution of Eq. (2) as

N r— R Ry —-R -
T= 487[ —f—(ierfc——’ ! ]-f— In Ri/r iy CR] J:! (7)

2
+ 1 er €
2Wta, cerfe 24ta, In R/r" S 2Nta,

where iPerfeZis a multiple probability integral. The plus sign in the equation cor-
responds to a differential curve deviation downwards from the zero line on heat-
ing (B>0) and upwards on cooling (B<0).

Analysis of the approximate solution (Eq. (7)) and its comparison with the
exact solution of Eq. (2) shows that the maximal error of approximation with

J. Thermal Anal., 54, 1998



960 DILIGENSKY ct al.: INGRADIENT THEORY

R1<2R does not exceed 3%. The maximal error of heat flow calculations used for
phase transformation in the examined sample does not exceed 8%.

The moment at which the transformation stage is over is determined through
the equality of the total heat flow obtained for the examined sample after the
transformation period and the amount of heat necessary for complete transfor-
mation in the sample under investigation:

51

oT
2nRK\[ e 4t = nR°Hd
o

(8)

where 1, is the transformation stage duration, and H 1s the Iatent transformation heat.
Equations (7) and (8) give the expression to find the stage duration of the
phase transformation:

7R*Hd 21 2 Y4 _Ri-R] 4187
= - -—= 1 9
R ZTERB{E{Al 8(] n Rl/RJl erfc2 ,——ﬁal }+ 3 Tm} €

The part of the peak area corresponding to the phase (the initial part of the
peak arca) may be expressed as follows:

ty
$i=[Nerdr=B

0o

i (10)
2
Correspondingly, the DTA curve peak height is

h = Bt .y

We shall next examine the process of entering the quasi-stationary section af-
ter the transformation process in the sample by the DTA curve (levelling stage).
For this stage, the heat problem is expressed in the following way:

or_ (21, or)
o “{arl ’ far) (12
Tl = T1(7)
AT/l = 0

Thor, =0

where T(#) is the temperature of the heat-insulating wall at the moment when the
process of phase transformation is over. In Laplace transforms with a variable in
Eq. (12), we have
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- 3T 9T
FT—T1(r)=a1[—2-+—-—1 (13)
or rarj
OT/rheg = 0
Tleg, = 0

The solution of Eq. (13) may be given as

Ry
T=2n[G(r, ¥, YT\(¥)dr
R

where

G ) <r<y <R
G(’., r/, F) — {lt(I)V(r)/Znalu(Rg) R ¥ ¥ 1

u(r' Ww(r)2nau(Ry) R<¥ <r<R;

TR FR
u(r) = Ko ?Jl\/a—l +Jo —Z—’KO\/—]
1 1 1

ai

: - [T
Wr) = K, —?—JO'\/ —FaRZ - N Z—’KO‘\/%
1 1 1 I

is the function of Green.
Using limiting theorems for Laplace transforms and the properties of con-

tinuous integrals with parameters, we get the peak area value corresponding to
the levelling stage. For the final section area of the thermal effect:
t
Fe=lim,, WJ-T(r, Dler dr = limF%}(r, Fleg = limp , oTlg
f
R, (14)
Fi=2nlim[G(R, ¥, YT\(+") dr’
R

Performing direct calculations on Eq. (14) and taking into account that with
R<r'<R, R1<2R is fulfilled with an error less than 2%:

’ s ’

r _I:_~}‘
Ry nR1~R1

We get the final expression for the final section area:
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4 (R - R)l] [1 5(R1 —R)tl a2 )2 R, —-R 15
=BN— { +[ 211} erfc—:zm} + (15)

‘\’nal 2 3ay
2 2
(Ri-R%* R -R Bt1 R, )\ R-R|, R-R
+ e 2R In—+1 i “erfc
{ 3Va; ’ Tf 2Vt ay R In E_I_ f 2Vha
R

The total peak area is calculated as the sum of the initial and final section areas.

Direct studies of the calculated dependences describing the basic quantitative
elements of thermal curves show that the total peak area with an accuracy up to
the errors caused by the approximate formulae may be calculated through the ex-
pression

R*Hd R1 (16)

$= 2k

It should be mentioned that dependence (16) is a linear one and therefore al-
lows generalization in the case of chemical reactions.

The peak height dependence of the phase transformation thermal effect and
heating speed is more complicated. First of all, it should be mentioned that the
dependence has a different form for large and small transformation durations.

For a transformation of long duration, that is with t]all(Rl—R)2>l, this de-

pendence will be
R:ﬂRZHBdln Ri/r (17)

ky

For a transformation of short duration, that is with tlaI/(Rl—R)2<1:

A 9ER1d1 2
R (18)

h= H"Bd

1
4 ki
Hence, in the context of the ingradient approach, we have a description of the
basic quantitative elements of a DTA curve: the phase transformation duration
(Eq. (9)), the initial section peak area (Eq. (10)), the final section peak area

(Eq. (15)), the total area (Eq. (16)) and the peak height (Egs (1) and (18)).
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